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A New Method for the Numerical Solution of 
Integral Equation Approximations 1 

P. T. Cummings  2 and P. A. Monson 3 

A new numerical technique for solving the Ornstein-Zernike equation is 
described. It is particularly useful in solving the Ornstein Zernike equation for 
approximations and pair potentials (such as the Percus-Yevick and mean 
spherical approximations for finite ranged potentials) which imply a finite- 
ranged direct correlation function since for such approximations the numerical 
technique is essentially exact. The only approximation involved in such cases is 
the discretization of direct and total correlation functions over the finite range 
on which the direct correlation function is nonzero. Thus, the new method 
avoids truncation of the total correlation function and should permit the critical 
point and spinodal curve to be mapped out with greater accuracy than is 
permitted by existing methods. Preliminary explorations on the stability and 
accuracy of the method are described. 

KEY WORDS: critical phenomena; integral equation approximations; 
numerical methods; Ornstein-Zernike equation. 

1. I N T R O D U C T I O N  

One of the aims of current research in liquid state physics is to develop a 
comprehensive (accurate both away and at critical points) statistical 
mechanical formalism which is applicable to model fluid systems inter- 
acting via quantitatively accurate intermolecular potentials. Aside from the 
intrinsic scientific interest in the successful development of such a for- 
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malism, there are substantial practical benefits to be gained from such a 
theory of fluids. For example, the correlations typically employed in 
engineering design calculations [1 ] are based on equations of state which 
yield classical (or mean field) behavior at critical points (defined for 
liquid-gas critical points in technical detail in Table I) and consequently 
prove to be inaccurate in their vicinity. [In TableI, p k B T z v  = - 

k B T ( d p / 3 P ) T =  1 + p S h(r) d f  and the quantities Ap = p - p~, A T =  T -  To. 

In these expressions, Xv is the isothermal compressibility, p the number 
density, T the absolute temperature, k s Boltzmann's constant, h(r) the 
total correlation function (defined below), and pC and To, respectively, the 
critical density and temperature.] At liquid-vapor critical points, the 
adverse effect of classical criticality is often seen most clearly in calculated 
densities, since according to experiment and modern theory, the density 
variation near the critical points of real systems is significantly stronger 
than that predicted classically. 

Industrially important processes for which the behavior of fluid 
systems near their critical points becomes an issue include supercritical 
extraction [3] and enhanced (tertiary) oil recovery using CO2 flooding 
where operating conditions often traverse mixture critical points [4]. 
Several ad hoc methods have been proposed which either attempt to incor- 
porate results from renormalization group calculations into classical equa- 
tions of state [5] or develop empirical correlations for specific properties 
such as the enthalpy of vaporization [6, 7]. However, rather than intro- 
ducing the correct nonclassical critical behavior into the thermodynamic 
model in an empirical fashion, it would be more satisfactory approach to 
seek a consistent statistical mechanical basis from which thermodynamic 
models can be derived which treat fluid behavior correctly both at the 
critical point and in other regions of the phase diagram. 

The predictions of integral equation approximations (IEAs) in the 
vicinity of the liquid-gas critical point have recently become the focus of 
renewed interest [8-25]. The reasons for this increased attention are that 

Table I. Definition of the Major Critical Exponents for a Fluid in Three 
Dimensions in Terms of the Isothermal Compressibility XT 

Exponent Definition MF" SM b Experiment [2] 

7 XT~(AT) -~, P=Pc, T>~T~ 1 2 1.24-t-0.05 
6 Xr~[Ap[ ~-~, T = T  c 3 5 4.8__+0.2 
rl h(r) ~ r - l - " ,  P=Pc, T= T~ 0 0 ~0.05 

Mean field (classical, Van der Waals) value. 
b Spherical model value. 
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IEAs are exact through the first three virial coefficients of the pressure (and 
so are accurate at low density), are well characterized from a theoretical 
point of view through cluster expansions [26] (thus offering scope for 
systematic improvement), are acceptably accurate at dense gas and liquid 
state points, and are solved in orders of magnitude less time than corre- 
sponding, "exact" computer simulations. Consequently, at this point in 
time it appears that integral equations represent a promising route to a 
theory of molecular fluids with general applicability (i.e., both away from 
and in the vicinity of critical points). 

The renewed interest in the predictions of fluid state IEA theories in 
the vicinity of the liquid~as critical point of simple fluids was spurred 
by the work of Kozak, Luks, and collaborators on the solution of the 
Yvon Born-Green equation (coupled with the Kirkwood superposition 
approximation, YBG-KSA) for the square well fluid in three dimensions 
[8, 9]. On the basis of numerical solution of this equation, Kozak, Luks, 
and collaborators analyzed the liquid-gas critical point of the square well 
fluid and reported that the YBG-KSA equation predicted nonclassical criti- 
cal exponents (see Table I) in the range of experimentally determined 
values [9]. Subsequent analytic work [10], culminating in the papers of 
Fishman and Fisher [11 ], established that within the YBG-KSA equation 
there is in fact no critical point for the square well fluid in three dimen- 
sions. Kozak, Luks, and collaborators [12] have recently performed 
numerical studies which are consistent with Fishman's conclusions. 

It is beyond the scope of this paper to review the many subsequent 
developments regarding the critical behavior of IEAs [13-25]. However, it 
should be pointed out that much of this work has focused on IEAs defined 
in terms of the Ornstein-Zernike (OZ) 

h(r)=e(r)+p f c(IEI) h(IF-EI)dE (1) 

in which c(r) is the direct correlation function, h(r)[ = g(r)- 1, where g(r) 
is the radial distribution function] is the total correlation function, and p 
is the number density. For example, the Percus-Yevick approximation 
[27] (PYA) for the exact independent, closure relation between h(r) and 
c(r) is given by 

c(r)=f(r)[l+h(r)-e(r)] (2) 

where f ( r ) =  exp[-~(r)/kBT ] - 1  is the Mayer f function, ~b(r), k~, and T 
are the intermolecular pair potential, Boltzmann's constant, and absolute 
temperature, respectively. For hard core systems [~b(r) = ~ ,  r < a, where a 
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i s  the hard core diameter],  the mean spherical approximation (MSA) is 
given by [26] 

h ( r )  = - 1 r < a 
(3) 

c ( r )  = - ~ ( r ) / k B  T r > a 

The hypernetted chain approximation (HNCA) is given by [26] 

c(r )  = f { r )  y ( r ) +  [ y ( r ) -  1 - - In  y( r ) ]  (4) 

where y ( r )  = e x p [ O ( r ) / k B  T ]  is known as the cavity distribution function. A 
summary of the present known status of these three IEAs is given in 
Table II. 

As evidenced by the study by Kozak and co-workers and the present 
state of confusion regarding the HNCA, probing the critical phenomena of 
IEAs numerically poses several difficulties. As shown by Cummings and 
Monson [19, 20], who compared numerical solutions to IEAs with corre- 
sponding "exact" analytic solutions, the usual numerical methods employed 
to solve IEAs are able to approach the critical point accurately enough to 
determine 7 and 6 only if 7 ~< 2 and 6 ~< 3. This is because larger values of 
these exponents require that m = p k s T / Z r ~  10 4 at the critical point in 
order for the asymptotic behavior to be evident, a very difficult goal to 
achieve numerically. 

In both studies [19, 20], the critical point was located numerically 
using Gillan's method [32], a highly efficient numerical technique for the 
solution of IEAs which combines Newton-Raphson  and Picard iteration 

Table II. Current Status of Knowledge Regarding the Critical Cdnstants of 
the Three Main Integral Equation Approximations 

Approximation Critical behavior M e t h o d  Reference(s) 

PYA MF a Analytic 28, 13 
MF a Numerical 15 
MF Numerical/analytic 20 

MSA SM Analytic 29 
SM Numerical/analytic 19 

IINCA No true critical point Numerical 30, 23 
Very small 7 Numerical 24 
No power law or logarithmic Numerical 25 

divergence in X r 

a With nonclassical scaling equation of state. 
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methods [33] in an insightful way. In common with most algorithms for 
the numerical solution of lEAs, Gillan's method requires the discretization 
of h(r) and c(r) into a set of N values representing h(ri) and c(ri), r i = iAr, 
i = 1,..., N and the assumption h(r) = 0 for r ~> R = AfAr. (A similar trunca- 
tion is not always necessary for c(r) since in the MSA, for example, its 
behavior for r >  a is known analytically [-19].) Thus the accuracy of any 
numerical scheme must be assessed as a function of Ar and R. Cummings 
and Monson [19] found that for larger R (and, to a lesser extent, smaller 
Ar) the calculated critical constants (density and temperature) come closer 
to their "exact" values (exact in this context meaning results obtained 
analytically). 

Monson and Cummings [20] noted that, in both the MSA and PYA, 
the phase diagrams for the two fluids considered (the hard core Yukawa 
fluid [34] and AHSF, the adhesive hard sphere fluid [28]) can be divided 
into three regions: region I, in which analytically there are two real solu- 
tions, one of which is unphysical [h(r) diverges at large r]; region lI, in 
which analytically there are two real solutions, both of which diverge at 
large r (but one is the analytic continuation of the physically acceptable 
solution); and region III, in which there are two complex solutions which 
are complex conjugates. While acceptably accurate in region I, the usual 
Gillan method cannot yield correct results inside region II [because of the 
truncation of h(r)] or region III (because of the assumption of real solu- 
tions). One improvement that can be made to the Gillan method is to 
permit complex solutions as was done for the AHSF in the PYA by 
Monson and Cummings [20]. Inside region III, numerical solutions were 
found which have real and imaginary parts which are in good agreement 
with the analytic results [20]. This was the first numerical observation of 
complex solutions to an IEA. 

2. NEW ALGORITHM FOR SOLVING INTEGRAL EQUATION 
A P P R O X I M A T I O N S  

From the comparison between numerical and analytic solutions of 
IEAs [19, 20], it is clear that any numerical scheme which requires that 
h(r) = 0 for r > R is unable to approach the critical point sufficiently closely 
either to enable the exponent 6 to be determined unequivocably if it has a 
large enough value [19] or to predict the behavior of the total correlation 
function observed in region II. This suggests that a method not dependent 
on an r-space truncation of h(r) should be employed in the vicinity of 
liquid-gas critical points. As well as the Gillan method and the usual 
Picard iteration, this rules out the finite-element method of Mier y Terfin 
et al. 1-35]. 
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One such algorithm was derived by Baxter [-36] and used by Watts 
1-30]. It is based on a factorization of the OZ equation and yields a 
numerical algorithm for the calculation of h(r) under the sole assumption 
that e(r) is finite ranged [i.e., c(r) = 0 for r > R, as it is in the MSA and PY 
for finite-ranged potentials, and is effectively so for other potentials in these 
approximations]. Watts [37] also reported a private communication by 
Baxter which outlined an algorithm for employing the more celebrated 
Baxter factorization [38] in a numerical scheme. Baxter showed that if 
c(r) = 0 for r > R (i.e., the direct correlation function is finite-ranged, as it 
is in the PY and mean spherical approximations for finite-ranged poten- 
tials), then theOZ Eq. (1) can be written (factorized) into two equations: 

rh(r) = - q ' ( r )  + 2~p q ( t ) ( r -  t) h ( l r -  tl) dt (5) 

rc(r) = - q ' ( r )  + 2rcp q'( t)  q(t - r) dt (6) 

The function q(r) has the properties 

q(r) = 0 for r < 0 and r ~> R (7) 

Baxter [38] suggested that the two equations (5) and (6) could be used, 
in conjunction with the closure relation, to iterate on the function q(r), 
thus yielding a simple numerical method for solving the OZ equation. 
Several authors [31] used this concept to develop stable numerical for 
extending simulation data on radial distribution functions to large separa- 
tions. In this paper, we introduce a variant of Baxter's idea which turns 
Eqs. (5) and (6) into an iterative scheme for the function q'(r) as follows. 
We define q; = q'(ri), H i = rih(ri), Ci = r~c(r~) where, as before, ri = i Ar, i = 
1 ..... N, with dr  = R / N  being used in r-space to discretize the functions of 
interest. Suppose that q;(n), ql,), HI,~, and CI ") are the nth iterates for the 
functions q'(r), rh(r), and rc(r). We calculate ql n) from the formula 

(n, dr  ,(~) 
q l " ) = q i + ; 1 - ~ [ q i  + q';~)l ], i = 1  ..... N--1 (8) 

which follows from using the trapezoidal rule to integrate q'(r). From (7), 
we have q%n)= 0. From q;(n) and ~i"(n), the CI n) are calculated using Eq. (6). 
The integration is performed using the trapezoidal rule, yielding 

N 

CI n) = - q;(") + 2rcp ~ ~p Arq,'(n)qp(n) , (9) 
p = i  
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where the tip are the coefficients in the trapezoidal rule integration, fli= 
fiN =1/2,  t i p = l ,  p = i + l  .... , N - 1 .  The nth iterate for rh(r), H~ "), is 
obtained from the closure relation. For example, the PY approximation 
yields 

Hln) - -=-exp[ -~ ( r i ) / kBT][Hln -1 )+r~-Cl  ")] - r  i (10) 

The penultimate step is to calculate q~(OUt) from Eq. (5): 

N 
q~(O,,) = -- HI ") + 2rcp ~ ~p sgn ( i -  p) Hli_plqp(n) (,,) (11) 

p = l  

where sgn(x) is the sign function [sgn(x)= -1 ,  x < 0 ,  sgn(x)= 1, x~>0] 
and ~1 =~U = 1/2, ~p= 1, p = 2 ,  ..., N--  1. The (n+  1)st approximation for 
q'(r) is then given by 

q,.'(" + ~) = o~q; (~ q- (1 -- 0~) q;(") (12) 

where c~ is a mixing parameter designed to enhance convergence. Thus, our 
implementation of the Baxter idea amounts to an iteration on the function 
q'(r), which we have found to be more reliable than iterating on q(r) due 
to the inaccuracies that arise in numerical differentiation. Alternatively, one 
can recast the above equations into a set of nonlinear algebraic equations, 
the q;(n/which could then be solved using the Newton-Raphson technique. 
In this case, we can consider the numerical scheme above consist of solving 
the set of nonlinear equations 

fil_,(n) qf(Out) = 0, tq, ,..., q~")) --= q;(") -- i =  1,..., N (13) 

since at the exact solution qj(n)_ q;{O,t)= 0. The Newton-Raphson techni- 
que requires that the Jacobian J, given by 

3 s  Oq ,, (out) 
J,j - ~ = 3 0. -- Oqj Oqj ~") (14) 

be calculated. In Eq. (14), au is the Kronecker delta function. From 
Eqs. (8)-(12), it is straight-forward to evaluate c~q'(~ (') as follows: 

g~q/(~ ~HSn) ~, F (~q~n) ~Hln)-] 
aqj(n) - aqj(n) + 2npAr ~ HSn~ + q~nl [[_aqj (") aqj~")J 

~ l ~ s g n ( i - p ) H l ~ p + q : ) s g n ( i -  p) Oqy(~) JJ  
+ ~ kOqj ~) 
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where 

aqj (n) -  --exp[--(J(ri)/kB T] cqq;(. ~ (16) 

#qJ(") - 6 o + 2 n p A r  6uq]")+q[(') ~q~n) (n) ,(n) V"lN il  -- Oqj(m+C~NflN_i+qN aqj(")) 

N {~ .a(. n) . On(n) \ 7  
+ n'(") ~e - - i | /  (17) "~ E k=PJ-XJ t--"lp a q j ( . ) j j  

p = i + l  

0ql ") N - - 1  

A r ( 6 u + S u s ) - A r  Z 6,j, i = 1  ..... N - 1  (18) 
Oqj (') 2 p = i + l  

From 7, (?q(~v)/c3qj (n)= O. 
Thus far, a preliminary evaluation of the proposed algorithm has been 

made for the PYA applied to the square well fluid with pair potential 

Csw(r) = 0% r < a 

= -e ,  a < r < R  (19) 

=0 ,  r >  R 

with R = 1.5o-. The square well fluid yields a q'(r) which is discontinuous 
at r = a. To contrast with the square well fluid, the PYA for a shifted 
Lennard-Jones potential given by 

C S L j ( r )  =- C L j ( r )  - -  OLj(Rc), r < R c 
(20) 

=0,  r > Rc 

where Cej(r) is given by 

CLj(r) : 4~ [ (~)12  -- (ra--)61 

was also considered because in this case q'(r) is continuous. Since at zero 
density, q ' ( r ) = - r f ( r ) ,  one can find the solution for q'(r) along an 
isotherm beginning at low density using this formula as a convenient initial 
guess. 

From our explorations to date, the following conclusions can be 
drawn. 

(1) For  straightforward iteration to be successful, a reasonably large 
number of points N, such as N ~  300, must be used. This is true 
for both the square well and the shifted Lennard-Jones potential 
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(2) 

and, therefore, does not appear to be a consequence of discon- 
tinuities in q'(r). 

When convergent, the method gives results that are in agreement 
with other calculations. This is exemplified in Fig. l, where for 
elk B T =  0.5 and pa 3=  0.5, we compare the results of the Gillan 
method and the Baxter method for the PYA applied to the 
square well fluid. The solid curve is obtained using the method 
based on Baxter's factorization described in above with N =  300 
and R =  1.5m The dashed curve is obtained using Gillan's 
method, with 256 points evenly spaced over the domain (0, 6.4a). 
The advantage of the Baxter method is that functions h(r), c(r), 
and q'(r) are required only on the interval 0 < r < R, and as a 
consequence, a very fine grid for these functions is attainable. 

3 [ , - -  , i ' I 

2 

g(r)  I 

0 I I 
2 3 

2 i 

i p 
4 5 

r/r 
r 

o j 

c(r) -2 -4 -6 

/ 
-8 I I 

0.5 IO 1.5 
r/e" 

Fig.  1. The radial distribution function 
and direct correlation function for the 
square well fluid [see Eq . (19) ]  at 
e/kB T= 0.5 a n d  pa3= 0.5 and with cutoff 
R = 1.5a. Solid curve, algorithm described 
in text; dashed curve, Gillan method. 
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Consequently, the density of points in the r-space discretization 
for the factorization-based method is 10 times that of the Gillan 
result. 

(3) Applying the Newton Raphson (NR) algorithm as described 
above is computationally intensive for N > O ( 1 0 2 )  and our 
exploratioias were limited to the square well fluid with 
N =  60 points. It was found that the NR method was not stable 
if the initial guess was some distance from the final solution. The 
best results were obtained by using the iteration scheme to get 
close to the final solution and then applying one or two NR 
cycles to accelerate convergence over the last few iterates. 

(4) Using iteration alone, one can obtain results for isotherms with 
elk B T 4  0.7 without difficulty. Convergence problems are encoun- 
tered along lower temperature isotherms, although it is possible 
by parametric continuation in e/kB T at fixed density to obtain 
solutions at lower temperatures (such as e/kB T =  1.0). 

3. C O N C L U S I O N S  

The results obtained to date with the factorization-based numerical 
scheme have been mixed and indicate that considerably more work needs 
to be done if the algorithm is to be useful for its intended purpose (i.e., to 
permit the exploration of the near-critical and two-phase regions of the 
phase diagram). The results suggest that a combination of iteration and 
NR steps is the most effective overall strategy for numerical stability. 
However, it is clearly numerically costly to use as many points in the NR 
step as are required in the iteration step. Thus, a method of combining the 
two steps requires mapping the iteration points onto a smaller number of 
points which are refined by the NR step. This is, in fact, the Gillan 
philosophy [32]. Its application to the present algorithm is the current 
focus of our ongoing research efforts. 
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